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SUMMARY 

An algorithm, called the Algebraic Continuity Equations Solver (ACES), is developed based on the concept 
that two algebraic equations (three for 3D problems) can be generated from rearranging the discretized 
continuity equations. These rearranged equations are used to re-compute the two velocity components 
(three for 3D problems), whose values are already obtained from solving the momentum equations. When 
written in a Navier-Stokes computer code, this algorithm is equivalent to a fairly concise set of statements 
and can be implemented immediately after the computation of the continuity equation. In our analysis, 
ACES is used in conjunction with a grid having nodal velocity components at the vertices and the nodal 
pressure at the centre of each computational cell. 

With the aid of ACES, correction of velocity components during the iteration can be inexpensively made, 
leading to faster convergence rates or rendering otherwise divergent computations convergent. 

Test problems include benchmark problems such as lid-driven cavity flows and buoyancy-driven cavity 
flows of various parametric values and grid sizes. A 3D time-dependent flow in an irregular geometry is also 
investigated. Discussions are presented to clarify some relevant issues. A possible reason why we think 
ACES is capable of improving the convergence rates is also given. 

KEY WORDS Navier-Stokes Incompressible Convergence 

INTRODUCTION 

The primitive-variable formulation has been widely adopted for computing incompressible 
Navier-Stokes Conventionally, in the formulation the momentum equations are used to 
solve for the velocity components and the continuity equation is reserved for computing the 
pre~sure .~  

In this analysis we will focus our attention on one of the most important properties of 
numerical schemes: the convergence rate, viewed as the measure of how fast the computed 
solution reaches values that remain unchanged even if iterations continue. It is known to us that 
the same scheme may lead to different convergence rates under different conditions of flow 
characteristics or geometries. For example, the convergence rates generally become slow when the 
convection is large and/or the computational cells are slender or skewed. Thus a seemingly viable 
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scheme for certain problems may become totally inadequate under other unfavourable condi- 
tions. 

We will demonstrate that it is beneficial to rearrange the discretized continuity equations, to 
generate a set of redundant algebraic equations and to re-compute the velocity field using this set 
of equations. This set of algebraic equations is redundant because it consists of linear combina- 
tions of the continuity equations. Such an algorithm, when used in conjunction with an existing 
numerical method, is found to actually increase the convergence rate of the solution or to make 
the otherwise divergent solution convergent. 

Although the text description is based on the use of finite difference methods, it is likely that the 
proposed algorithm can be used in conjunction with other numerical techniques such as the finite 
element method. Also, for clarity, the figures and most of the equations are two-dimensional. The 
algorithm, however, is readily extendable to three-dimensional flow problems, as one of the test 
cases illustrates. 

In the following text we first briefly describe an existing primitive-variable formulation. We 
then present the modified continuity equations and the grid on which these equations will be 
discretized and computed. Next, the proposed algorithm is described and several test cases and 
their results are presented. Convergence rates of the solution obtained by using the proposed 
scheme are compared with those rates obtained without using the proposed algorithm. This 
comparison is followed by discussion of the results and other relevant issues. 

GOVERNING CONTINUUM EQUATIONS 

The time-dependent incompressible Navier-Stokes flows are governed by the continuity 
equation, 

the momentum equation, 
v . u = o ,  (1) 

1 
Re 

au 
- + u * v u = -  v2u-vvp-gg, 
at 

and the energy equation, 

ao 1 
at Pe  
- + u * vo =- V28, 

where u=(u, u, w ) ~ ,  g=(O, g, O)T and Pe is the Peclect number defined as PrRe. Also, the 
Boussinesq approximation has been implied in equation (2a). 

A PRIMITIVE-VARIABLE APPROACH 

We will first briefly describe the pressure gradient (PG) m e t h ~ d , ~ - ~  an existing primitive-variable 
formulation applicable to solving equations (1) and (2). 

The PG method is based on two strategies: the first establishes how pressure and mass flow can 
be related; the second leads to the construction of a modified non-staggered grid from a grid 
originally staggered. With these strategies the pressure gradients can be expressed by the velocity 
components located within the nine-point stencil. For simplicity we will present our description 
on a 2D uniform grid. The PG method, however, is applicable to 3D problems with body-fitted 
co-ordinates as well. 
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Relating the pressure with the mass flow 

The net mass flow over the shaded control volume shown in Figure 1 can be approximated by 

net flow=out flow-inflow=0'5h(u~,+u,+u,,+u~)-0'5h(u~+uc+u,+u,). 

A basic requirement for a working primitive-variable scheme is its capability to find a pressure 
field where the net flow over every computational cell is zero. Net non-zero flow leaving a 
computational cell (V  * u  is positive) during iterations implies that the iterated pressure within that 
computational cell is too large, forcing too much flow out from the cell. The magnitude of the true 
pressure may be less. Subsequently the pressure for the next iteration should be reduced. 
Therefore we can relate the pressure with the net flow by 

p"+')(x, y)=p")(x, y)-y(net flow)/h2, y>O, (3) 
which indeed interprets the aforementioned concept mathematically. The superscript k denotes 
the kth iteration. If only steady state is considered, the iteration step can be viewed the same as the 
time step. If transient (either true or false) problems are computed, k denotes the iteration number 
at each time step. Clearly, for negative net flows, similar statements can be made and equation (3) 
remains valid. 

It is reported* that at least four additional ways of modifying the continuity equations exist 
which also lead to equation (3). These modifications, along with their starting equations, are 
summarized in Table I. 

One way to estimate the magnitude of the proportionality y in equation (3) is described in the 
Discussion section. In this analysis, y is treated as a constant. A similar formulation for variable y 
can be obtained following the same derivation for constant y. 

For the square designated by ne in Fig. 1, equation (3) can be written as 

p:: "=p',",' - 0 3 (  UNE + uNE + UE - u , - u C - u C -  UN + uN)/h .  (4) 

As an illustration, we present an iterated computer output of the nodal pressure and the net 
mass flow emerging from the computational cell located at i =  6 andj= 6 in the classical lid-driven 
cavity flow problem ( R e  = 1, h = 0.1). At the fourth iteration, V * u is 0.542, indicating that a net 
amount of fluid leaves the control volume and that the pressure within the control volume may be 
too large. According to equation (3), the pressure is decreased by an amount proportional to the 
net outflow. This correction procedure is repeated to k = 6, when the net flow is reversed (-0.737), 

sw S SE 

Figure 1 .  A nine-point computational stencil for the pressure gradient (PG) method 
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Table I. Four ways of modifying the continuity equation to lead to equation (3), a short description of each 
modification, and the starting equation@) 

Method of artificial compressibilityg* l 2  

The continuity is modified on the basis of the compressible flow assumption. 
aplat + gv . u = 0. 

Penalty function method’ 
The pressure is assumed to be a product of a large number and V * u. 

where A is a large number. 
p = - 1 v - u ,  

Source-diminishing method 
The computation starts at a = 0 when mass sources are present in the flow field and when the pressure is 
uniform (zero) throughout the flow field. The source is forced to diminish when a is gradually increased to 
unity. 

( l - a ) p + a V . u  = 0. 

Pressure substitution method 
The discretized momentum equations are substituted into the discretized continuity equation to 

Equation (6a) and the discretized version of equation ( 1 ) .  
yield equation (3). 

suggesting that the pressure value has been underestimated and should be increased. After nine 
iterations, V - u  becomes positive again (0.0731, forcing the pressure to reduce. Finally, at 106 
iterations, V - u  diminishes to and the pressure solution has converged. 

Constructing a modified non-staggered grid 

It is the pressure gradient, not the pressure itself, that appears in the Navier-Stokes equations 
and affects the momentum change. Therefore, for incompressible flows in which an absolute 
pressure value is immaterial and the equation of state is not needed, it is possible to determine the 
entire flow velocity field without the knowledge of pressure distribution. 

If the pressure gradients can be compactly expressed in terms of the velocity components 
within the nine-point stencil (for 2D problems), the nodal unknowns u, u, dpfdx and dp/dy will be 
located at the intersections of grid lines. The grid staggeredness is conveniently eliminated, as 
depicted in Figures 2(a) and 2(b). Therefore, when equations similar to equation (4) have been 
written for pnw, psw and p,,, we can derive, after straightforward algebra, 

( ~ P / ~ x ) F  + l)=(pne + pse -Pnw -pswYk)/2h 

= ( ~ p / ~ ~ ) ~ ’ - ~ ( ( 2 u E + 2 u W - 4 u ~ + u N E + u N W - 2 u N + ~ E  
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$- 2- $- 

9- i p i P i p i  2- $3,- 

1 l b 9  I 
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pi- P y $ d -  

( 0 )  4 stands for u and v 

I-1-1-I P- 
I i-i-i 
I-17-I $-2-$- P 

(b )  #I stands for u and v ; 

8 stands for u ,  v .  ap/ex,  and e p p y  

Figure 2. Change from (a) a staggered grid to (b) a modified non-staggered grid 

In writing the computer code, it is unnecessary to distinguish the pressure gradients on the left- 
hand side from those on the right-side of equations (5a) and (5b). The former is the current value 
being computed; the latter is the previous iterated value. It can also be proved6 that equations (5a) 
and (5b) imply equation (3) as long as the global mass is conserved. 

The transport equation of the x-direction momentum can be discretized using the implicit 
scheme as 

where 
acceleration + convection =diffusion -pressure gradient, (6)  

acceleration = ( uc - iic)/dt, 

with the overbar denoting ‘at previous time step’, 

convection = [ - 0 5 ( u c +  1 uc/)uw +\uc\ uc +O~5(uc-\uc))u,  

- 0.5 (uc + I uc 1 )  us + I uc I uc + 0 5 ( U C  - I ucI)uN 1 l k  
diffusion = ( uw + u, + uE + uN - 4u,)/h2Re 

and the pressure gradient is given by equation (5a). We then rearrange equation (6) to obtain an 
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underrelaxed expression for uc as 

uc=a[terms not involving uc] +(1 -a)uc. 

Intentionally adding uc- uc to the right-hand side for easy algebraic manipulation and adding 
superscripts for clarity, we obtain 

u g + l ) = u ( k ) + y ,  C reSuI(k) . (k+l ) l  (64  

(7) 

where resu is the residual of the discretized u-momentum equation, defined as 

resu = - acceleration - convection +diffusion -pressure gradient. 

The superscript [(k), (k + l)] denotes that unswept unknowns are at ( k )  and swept unknowns are 
at ( k +  1). The underrelaxation parameter is found to be 

1 4 ( u c ( ( k )  1 Oc((k) 
yu = a /  (- +-+-- +-) h ’  

dt h2Re h 

In the present analysis the underrelaxation parameter a is chosen to be between 0 4  and 1.0. 
The algebraic equation for uc can be derived similarly. If the second-order-accurate upwind 
formulation is used, it can be readily shown that 

It can also be shown by straightforward algebra that equation (6a) is identical to the result 
obtained from rearranging equation(6) and then collecting terms containing uc. It is our 
preference to use equation (6a) rather than the rearranged form because (i) no algebraic manipula- 
tion is required prior to coding the computer programme and (ii) the value of resu is eventually 
needed for testing the convergence status. 

Finally, if only the steady state solution is of interest, we can simply set dt to be a large number, 
say lo7, and set the number of time steps to be one, without having to revise the computer code 
significantly. 

ALGEBRAIC CONTINUITY EQUATION SOLVER (ACES) 

It is well known that for ensuring convergence of the solution in computations for incompressible 
flows governed by the continuity and momentum equations, an iterative scheme such as the 
Gauss-Seidel method requires that the resulting coefficient matrix be diagonally dominant. The 
momentum equations alone, when discretized in conjunction with certain upwinding treatments 
for the convection terms, generally can be cast into a set of diagonally dominant algebraic 
equations. Therefore, with regard to convergence, no major difficulty asscoiated with computing 
the momentum equations arises. 

Satisfying the continuity constraint, which is responsible for solving the pressure for incom- 
pressible flows, is a more challenging task. The constraint not only lacks diagonal dominance in 
the discretized sense but also contains just the velocity components and not the pressure. In other 
words, the flow’s ‘attempt’ to conserve its mass for every computational cell generally hinders the 
convergence process (see Discussion section). 

The key to accelerating the convergence rate for computations of incompressible flows lies in 
manipulating and guiding the velocity components to satisfy the continuity constraint faster. 
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Taking the gradient of equation (l), we generate three equations as 

a2u a Z V  a2w --+- + - - -  - 0, 
ax2 axay axaz 

a2u a Z V  a Z w  

axaz ayaz a22 
---++++=o. 

Equations (8aH8c) can be used to re-compute u, u and w respectively. Although the coefficient 
matrix of the discretized equations of (SaHSc) is not truly diagonally dominant, use of an iterative 
scheme such as the Gauss-Seidel method generally leads to convergent solutions because of the 
second-derivative term a2u/ax2 in equation @a), d2v/ay2 in equation (Sb) and a2w/az2 in 
equation (8c). 

Several legitimate ways to discretize equations (SaH8c) exist. For example, referring to 
Figure 1, which represents a 2D computational cell, we can transform the 2D version of 
equation (8a) into 

using the straightforward central finite difference, or into 
(94  1 uw - 2uc + UE + 4 (ONE + vSW - U S E  - vNW) = 0, 

& (UNW- 2uN + UNE) + (UW- 2uC + UE) +&(uSW- 2Us + USE) + $( UNE + VSW -USE -UNW)=o, 
(9b) 

using the Galerkin finite element method with bilinear square elements. Neither equation (9a) nor 
equation (9b), however, is helpful in accelerating the convergence rate with regard to the 4/1 grid 
(see Discussion section). The discretized result that contributes most beneficially to the acceler- 
ation of convergence is the one derived from algebraically manipulating the discretized continuity 
equations. For example, the 2D version of equation (8a) should be transformed into 

1 $(u,W-2uN + UNE) + q(uW-2uC + UE) +$(uSW-2u, + USE) +z( ONE + USW- USE- uNW)=o, 
( 1 0 4  

which can be readily shown to be the same as the algebraically manipulated result: 

(c. eq. of cell ne) + (c. eq. of cell se) - (c. eq. of cell nw) - (c. eq. of cell sw) = 0, (lob) 

where c. denotes continuity. Equation (loa) or (lob) can be rearranged to obtain an expression for 
uc. Similar discretizing procedures apply to equations (8b) and (8c). Since equation (lob) is merely 
a rearranged form of the original discretized continuity equations, neither additional equations 
nor additional boundary conditions are introduced. 

It is possible to replace equation (lob) with other arrangements, such as adding c. eq. of cell nw 
and c. eq. of cell sw in a one-sided fashion. However, this choice cannot provide us with a 
diagonally dominant set of albegraic equations for u,. Neither is it adequate for the situation 
where the flow is westbound. Equation(10b) is the arrangement that is impartial to the flow 
direction and at the same time gives the maximum value of the coefficient for uc. 

When the geometries of the flow systems are irregular, it is common practice to introduce the 
body-fitted co-ordinates t; and t ~ .  In these circumstances the continuity equation in a 2D 
computational domain becomes 

all au au a0 
y,--y(-+x --x - = 0, a t  all (atJ ,a{ 
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which can be rearranged into 
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aii av“ -+- = 0, a t  d? 

where u” and v” are the transformed velocity components,’2 defined as 
- 
u = y,u-x,u,  (124 

u = x < v -  ycu .  (12b) 
I 

With the aid of equations (12a) and (12b), the ACES is also applicable to the problems involved 
with the body-fitted co-ordinates. For example, in equation (10a) all the velocity components are 
replaced by their counterparts defined in equations (12a) and (12b). 

NUMERICAL PROCEDURE 

The numerical procedure adopted in this study is the point-by-point Gauss-Seidel iteration 
method with the first- or second-order-accurate upwind difference for the convection terms. The 
continuity equation is replaced by equation (3) and equations (5a) and (5b) to account for the 
pressure and the pressure gradients respectively. The computer programme is written in the 
following logical manner. 

1. Specify the input data, such as the values of governing parameters, the mesh size, the 
convergence criteria, initial guesses, etc. 

The cycle of time marching (for true unsteady problems) starts here. For steady state problems, set 
the number of iterations to one and dt to a large number. 

2a. Specify the velocity boundary conditions of Dirichlet type. If the velocity boundary 
conditions are independent of time, this step can be taken out from the time-marching 
cycle. 

The cycle of outer Gauss-Seidel iteration starts here. 

2b. Specify the velocity boundary conditions of Neumann type. 
3. Compute nodal us and us using equation(6a). We will call this step the inner Gauss- 

Seidel iteration. For all runs here, the number of inner iterations is taken to be one. 
4. Compute nodal pressures using equation (4). 
5. Compute pressure gradients using equations (5a, b). 
6. Test the convergence status. If the solution has converged, go to step 8, preparing for the 

next time step. 
7. Use the ACES (equation (lob)) to re-compute the velocity components. If the body-fitted 

co-ordinates are used, ii and v“ should replace u and u. Then u and u should be recovered by 
rearranging equations (12a) and (12b) as follows: 

u = (xCi i+x ,v” ) /J ,  

= (Y,U+Y,v”)/J,  

where J is the Jacobian, defined as 

J = XcY,-X,Y,. 

The cycle for outer Gauss-Seidel iteration ends here. The number of outer iterations is to be used 
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as the indicator of convergence rate. 

8. Print the output. 
9. For time-dependent computations, return to step 2 for the next time step. If the steady 

state or a predetermined time duration has been reached, go to step 10. 

The cycle for time marching ends here. 

10. stop. 

Numerical experiments indicate that in step 7 it is optimal to choose the number of inner 
iterations (to be distinguished from the outer Gauss-Seidel iteration) to be approximately four. If 
the number is lower than four, the velocity components will not be sufficiently corrected to satisfy 
equations (5a) and (5b). If the number is higher than four, computation time will be spent 
needlessly. 

In the present analysis the solution is considered to be convergent and the computation is 
terminated when the following three criteria are simultaneously satisfied. 

(a) Residuals of all the continuity equations reduce to not greater than 0.1 % of the maximum 
residual (in a certain cell) in the first iteration. 

(b) Residuals of all the momentum equations reduce to not greater than 0.1 % of the maximum 
residual (at a certain grid point) in the first iteration. 

(c) Ratios (u(i, j ,  k )  - up( i, j ,  k ) ) / u (  i, j ,  k )  (where up( i ,  j ,  k )  is the previously iterated values at  
grid point (i,j, k ) )  reduce to not greater than 0.001. Those with absolute values of u(i , j ,  k) 
less than 0.005 are not counted. The implementation of this cut-off value eliminates the 
possibility of needlessly continuing the computation when most of the nodal velocities 
except a few near-zero ones have converged. 

For all the test problems considered here, these criteria appear to be adequate because the 
present solutions differ insignificantly from those obtained under much more stringent condi- 
tions. 

The underrelaxation parameter y is designated as 

y = 2.2/Re. 

The derivation of this estimate is given in the Discussion section. For the buoyancy-driven cavity 
flow, Re is taken to be unity. For Euler flows where Re is infinity, we have used a pressure 
gradient correction procedure to enforce the continuity constraint. This topic is currently under 
investigation and may be published elsewhere. 

TEST CASES 

Lid-driven cavity flow 

The computer programme, without the ACES, has been tested against various benchmark 
 problem^.'^,'^ For example, for the classical lid-driven cavity flow” at Re = 400, the solution 
computed here on a grid of 50 x 50 compares favourably with the literature result,I6 as shown in 
Table II(a). This solution is obtained using the second-order-accurate upwind difference and 
assuming the flow velocity at the two top corners to be zero (contained flow). The purpose of 
conducting this exercise and presenting this table is to suggest that our computer code can be 
believed to be free of errors and hence that the following observations are deemed somewhat 
reliable (at least for the chosen test problems). 
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Table II(a). Velocity distributions at ~ ~ 0 . 5  for the lid-driven cavity flow (Re  = 400). The subscript H 
denotes Harwell Report 

Y 
UH 
U 

Y 
UH 
U 

Y 
UH 
U 

Y 
UH 
U 

Y 
UH 
U 

Y 
UH 
U 

Y 
UH 
U 

0.02 
- 0.03 1 1 
-0.0312 

0.18 
- 0.2494 
-0.2610 

0.34 
- 0.2986 
- 0.3093 

0 5  
-0.1 146 
-01174 

0.66 
0.07 16 
00720 

0.82 
0.2575 
0.266 1 

0.98 
07950 
0.7978 

0.04 
- 0.0597 
- 0.0604 

0.2 
-0.2736 
-0.2871 

036 
- 0’2805 
-0-2892 

052 
- 0.09 12 
-0’0938 

0.68 
0.0957 
00967 

0.84 
0.2777 
02880 

1 
1 
1 

0.06 
- 0087 1 
- 0.0884 

0.22 
- 02946 
- 0.3092 

0.38 
- 0.2593 
- 0.2663 

0.54 
- 0.0682 
- 00704 

0.7 
0.120 
0.1217 

0.86 
0.2974 
0.310 

0.08 
-0.1 140 
-0.1 162 

024 
-0.3104 
- 0.3259 

0.4 
-0.2358 
-0.2417 

0.56 
- 0.0452 
- 0.047 1 

0.72 
0.1440 
0.1467 

0.88 
0.3199 
0.3347 

0.1 012 
-0.1408 -0.1681 
-0.1444 -0’1734 

0.26 0.28 
- 0.3204 - 0.3244 
-0.3362 -03394 

0.42 0.44 
-0.2115 -01869 
-0.2163 -0’1910 

0.58 0-6 
-0.0223 09009 
-0.0238 -00003 

074 0.76 
0.1679 0.1917 
0.1716 01962 

0.9 092 
0.3486 0.3983 
0,3672 0.4166 

0.14 
-0.1957 
- 0.2029 

0.3 
- 0.3220 
-03355 

046 
- 0.1624 
- 0.1 659 

062 
00243 
0.0235 

0.78 
0.2146 
02203 

0.94 
0.4798 
0.4969 

0.16 
-0.2230 
-0.2325 

0,32 
-0.3 130 
-0-3251 

0.48 
- 0- 1 383 
-0.1414 

0.64 
0.0478 
0.0476 

0.8 
0.2364 
0.2436 

0.96 
0.6104 
0,6227 

Table II(b). Errors of velocity distributions at x = 0.5 for the 
lid-driven cavity (Re = 400) in comparison with the result of 

HarwellI6 
~~~~~ ~ ~ ~ 

20 40 60 80 Harwell n 
Error 0.133 0.068 0.029 0.016 0.0 

It is reported” that use of the 4/1 grid, i.e. with four nodal velocities at the vertices and one 
nodal pressure at the centre of a computational cell, leads to two constraints on the velocity 
boundary conditions: one on the velocities normal to the boundary and the other on the velocities 
tangential to the boundary. The problem of contained lid-driven cavity flows violates the second 
constraint and therefore should not be solved on the 4/1 grid. 

For the reason mentioned above, the present primitive-variable approach is slightly modified 
to eliminate the second constraint and to yield a set of consistent algebraic continuity equations. 
Briefly, near the top of the boundary we introduce a set of nodal us (positioned at one-half grid 
size below the lid) as additional nodal unknowns. They are solved by using the momentum 
equations (instead of being the average of neighbouring us) and are used in the continuity 
equation. With this treatment the resulting coefficient matrix is associated with only one zero 
eigenvalue. 

The numerical error introduced by the scheme is estimated by computing 
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Table 111. Number of iterations for lid-driven cavity flows (n = 20) 
~~~ ~ 

Re 0 1 10 100 400 lo00 
PG + ACES 167 168 179 298 591 1116 
PG 399 409 386 348 630 * 

* denotes ‘non-convergent’. 

Table IV. Number of iterations for lid-driven cavity flows (Re = 400) 

n 2 5 10 20 50 
PG + ACES 14 270 455 59 1 738 
PG 20 * 539 630 * 

* denotes ‘non-convergent’. 

for the lid-driven cavity flow at Re = 400 at various grid sizes (n  = l / h )  and is listed in Table II(b). 
When the computer code is implemented with the ACES, the solution is found to be identical to 

that obtained without using the ACES, as expected. Having established this identity, we then are 
in the position to place our emphasis on the comparison of convergence rates. 

Varying Reynolds numbers for lid-driven cavity flow 

On a grid of 20 x 20 we compute the lid-driven cavity flow for Re = 0 (representing Stokes 
flow), 1, 10, 100,400, 1000 and 1oooO. The number of iterations (NI) required for the solution to 
achieve convergence is obtained either with the ACES or without the ACES and the comparison 
is shown in Table 111. It is noted that for steady state problems the present procedure without the 
ACES is equivalent to Chorin’s Artificial Compressibility Method (ACM). Also, the CPU time of 
a typical run on a S U N  IV workstation is found to be approximately 8 s. 

The ACES consistently results in faster convergence than the ACM for Re ranging from zero to 
1oooO. At Re = 1000 the solution computed by using the ACM did not converge at the 2000th 
iteration and most likely will not converge regardless of the allowed iteration number. Although it 
may be possible for the ACM to attain convergence by reducing the relaxation factors in the 
continuity equation and in the momentum equations, the NI will be considerably higher than 
2000. For example, with a = 0.1 and y = 2.2/Re, and at the 2000th iteration, there are 36 cell 
continuity residuals (out of 400) and 45 nodal momentum residuals (out of 361) whose values 
remain greater than the predetermined criterion value. 

Varying mesh sizes for lid-driven cavity flow 

At Re = 400 we also vary the mesh size for n = 2,5,10,20 and 50 for the lid-driven cavity flow 
and tabulate the NI for both methods in Table IV. The NI for the ACES is again uniformly 
smaller than that for the ACM. On finer grids ( n  >40) the solution computed by the ACM did not 
converge at the 2000th iteration. 

A recirculating Jow with mass crossing the system boundary 

To assess the ACES against problems with inflows and outflows crossing the system boundary, 
we apply it to the problem of a recirculating flow whose computed velocity vector plot (Re  = 100) 
is shown in Figure 3. A single jet enters the enclosure at the lower portion of the left boundary 
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Figure 3. Velocity vector plot of a jet-driven recirculating flow 

Table V. Number of iterations for a jet-driven recirculating flow 
~~ ~ 

Re 0 1 10 100 400 lo00 
PG +ACES 173 173 175 202 277 2227 
PG 161 161 184 221 387 1 

* denotes ‘non-convergent’ 

( j =  3), turns around and leaves the system at j = 9. Such a flow is different from the first three 
test cases, in which no fluid flows into and out from the system. As a test problem it is also 
more stringent than the one-direction, developing-to-fully-developed channel flow. 

The NIs are obtained by using both the ACES and the ACM and are listed in Table V for 
nx = 30, ny = 10 and various Reynolds number based on the height of the enclosure. In the very- 
low-Re regime, where the viscous effect dominates, it is fairly easy for the solution to converge and 
the ACES appears redundant. For larger Res the implementation of the ACES reduces NI and at 
Re = lo00 makes the otherwise non-convergent solution convergent. 
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Buoyancy-driven cavity flows 

Another benchmark flow problem is the buoyancy-driven cavity flow" schematically shown 
in Figure 4. The differences between this problem and the lid-driven cavity flow are the 
existence of the body force in the flow field and the coupling of the energy equation with the 
momentum equation. It is interesting to further examine if the ACES remains effective in 
accelerating the convergence rate. On a grid of 10 x 10 we obtain the numerical solution for 
Gr = gL3( T,- T,)/v2 T, = 10, 100, 1O00, 1OOOO and 100OOO. The NIs obtained using either the 
ACES or the ACM are presented in Table VI. 

For low Grs, when the solution can easily converge, the ACES is hardly helpful. For high Grs, 
however, the ACES makes the otherwise divergent solution converge. It is noted that for 
Gr = 100000 the relaxation parameter a is taken to be 07. Although it is possible to obtain a 
convergent solution using the ACM method with very low values of a, the NIs are generally more 
than twice the number attained by the ACES if the former solution does converge. 

A 3 0  unsteady flow within an irregular configuration 

The flow problems in the previous cases are steady and more or less academic. To further test 
the ACES for solving more complex flows, we apply it to a 3D unsteady flow problem, simulating 
gases leaving an annular diffuser, entering the dump-type collector box, making a sharp turn 
upwards and exiting from the top plane. The system schematic is shown in Figure 5. The upward 
velocity component at the exit plane is plotted in Figure 6. Relevant data input are Re = 200000, 
IZX = 20, ny = 20, nz = 5 and t = 1 , 5  and 10. A simplified zero-equation turbulence model is 
used; the inlet velocity profile at the entrance of the dump-type collector is assumed to be of 
quadratic form. 

When the body-fitted co-ordinates are used, the global mass balance in the computational 
domain, not the physical domain, must be guaranteed. In other words, we must ensure that the 

insu la ted  

x insu la ted  

Figure 4. The buoyancy-driven benchmark problem 

Table VI. Number of iterations for buoyancy-driven cavity flows (n = 10) 

Gr 10 100 lo00 lo000 1OOOOO 
PG +ACES 171 171 173 259 945 
PG 151 151 173 * * 

* denotes 'non-convergent' 
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Figure 5. System schematic of a 3D flow in a dump-type collector box 

t=5 t=10 

Figure 6. Unsteady exit flow velocity at three different time steps 

t = l  

sum of the transformed normal velocity, defined in equations (12a) and (12b), be zero on the 
boundary. For example, if the Neumann boundary condition is used for the outflow at the exit, 
we should use 

but not 
a q a q  = o 

av jay= 0. 

Although the flow is clearly 3D, the configuration of the system (representing only the dump- 
type collector) is independent of the z-co-ordinate, permitting the use of the 2D body-fitted co- 
ordinates. Without the ACES inserted in the computer code, the solution has failed to converge. 

DISCUSSION 

The reason why the ACES leads to fast convergence or robustness for large-convection flows can 
be offered as follows. Consider a fictitious lid-driven cavity flow satisfying the momentum 
equations and a modified continuity equation 

V . u + S  = 0, 

where S denotes a mass source (or sink), so distributed that the pressure gradients vanish 
everywhere in the flow field. Applying the ACM to this problem in conjunction with the first- 
order upwind difference at Re = 400 and nx = ny = 20, we obtain a convergent solution at the 
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134th iteration. The solution converges rapidly primarily because the continuity constraint is not 
needed and therefore the coefficient matrix of the discretized momentum equations alone is 
diagonally dominant. 

When S is absent, the pressure gradients are no longer zero. Now the continuity constraint 
should be imposed and the iteration number drastically increases to 630. This increase supports 
our conjecture that the flow is ‘trying very hard’ to meet the mass conservation criterion. In a non- 
rigorous sense we may state that approximately 80% of the effort of a numerical method is 
devoted to satisfying the continuity equation. Therefore, if a scheme is capable of satisfying the 
continuity equation rapidly, it is likely that this scheme can make the solution converge rapidly as 
well. 

Table VII displays the maximum values of residuals of the discretized continuity equations, 
resc, and those of the discretized x-direction momentum equation, res u, at various iterations for 
the lid-driven cavity flow at Re = 10 and n = 20. It can be seen that at the same iteration cycle the 
values obtained using the ACES are considerably lower than those obtained without using the 
ACES. 

In the remainder of this section we will discuss several issues pertaining to the use of ACES. 

Other grid systems 

The concept of the ACES can be extended to other types of mesh layouts such as the staggered 
grid shown in Figure 7(a) and the non-staggered grid shown in Figure 7(b). Referring to 
Figure 7(a), we write the continuity equations responsible for p1 and p z  as 

u C - u W + u N W - ~ S W  = 0, (144 

(14b) 

(154 

UE - UC + uNE- USE = 0, 

Subtracting equation (14b) from equation (14a) and rearranging the result, we obtain 
1 

UC == I( UE + UW + uNE + uSW - USE - uNW) = 0. 

Similarly, on the non-staggered grid shown in Figure 7(b) we can also derive an expression 
for uc as 

(15b) 
Unlike equation (10a) of the ACES and equation 15(a) of the staggered grid, equation (15b) 

contains nodal velocity components located beyond the nine-point computational stencil of uc. 
Therefore, when the velocity components adjacent to the boundary (such as uw) are computed, 
fictitious variables (such as uf) outside the computational domain must also be found by 
extrapolation. 

1 uc = I(uEE + uww +ONE + usw -USE - u ~ w ) -  

Table VII. Comparison of residuals of continuity equation (resc) and residuals of u-momentum equation 
(resu) 

Iteration resc( PG) resc(PG +ACES) resu(PG) resu(PG+ACES) 

40 
80 

120 
160 
200 

1.492 2.028 x lo-’  12.225 0.22 1 
1.141 2.193 x 11.601 2.341 x lo - ’  

2.698 x lo-’ 3.925 x 4.368 x lo-’ 3.983 x 
0126 7-667 x 0.767 7.674 x 10-3 

1.009 x lo-’ 0 (10-5) 3.952 x o(10-4) 
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Figure 7. (a) A staggered grid. (b) A non-staggered grid 

Inadequacy of equation (9a) 

Equation (9a) is of simpler form than equation (10a). Naturally, it would be desirable to use the 
simpler form in the ACES. Unfortunately, this attempt leads to global imbalance of mass and 
violates the compatibility condition for the pressure, as will be explained below. 

The mass balance over the shaded control volume shown in Figure 8 yields 

UE - UC + v,, - use = 0. 

If we make a reasonable assumption that 

'ne = ('NE + 'N + vC + vE) /4  

and 

v s e = ( v E + U C + v S + v S E ) / 4 ,  

equation (16) becomes 

uc - uw + ( V N  + VNW - v,, - v , ) / 4  = 0. 
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boundary 

1 

Figure 8. A deficient grid in which the control volumes for the mass conservation do not cover the computational domain 
entirely 

Subtracting equation (1 7b) from equation (1 7a) leads to equation (9a), which we thought might 
be used to compute ( d p / d x ) , .  However, in Figure 8 the computational domain will be incom- 
pletely covered by all the control volumes (drawn as the dashed line). Therefore the boundary 
conditions on the top and bottom cannot enter the problem. 

More importantly, it is clear that P, and P, will not be used to compute (ap/ay),, suggesting 
that (dpldx), and (dp/dy), are almost unrelated. In other words, it is likely that the algebraic 
version of the compatibility condition for the pressure (V x Vp = 0), 

is violated. Such violation indicates that we have unknowingly introduced some mysterious body 
forces into the Navier-Stokes equations. 

Time saving for computation of complicated $ow problems 

Generally, more complicated flow problems are governed by more transport equations. For 
example, for computations of turbulent fires (as opposed to laminar plumes) we need both larger 
numbers of transport equations and more terms in all transport equations to account for the 
turbulence, combustion and radiation. Between step 3 and step 4 of the numerical procedure we 
need to insert DO loops for computing turbulence quantities, species mass fractions, radiation 
intensities, etc. In this case, implementation of the ACES constitutes a relatively small portion of 
the entire cycle of the Gauss-Seidel outer iteration. 

Usefulness in debugging computer codes and in studying the convergence rate 

A basic Navier-Stokes computer code generally consists of two major parts: one part solving 
the momentum equations and the other solving the continuity equation. One way to debug a 
computer code or to analyse the convergence rate of this code is to intentionally separate these 
two parts and to solve either part alone. 

When solving the continuity equation alone, we assume that a non-uniform external body force 
exists and that the magnitude of this force is balanced by the residual of the momentum equation. 
When solving the momentum equation alone, we assume that a non-uniform mass source exists 
and that the pressure gradients vanish in the flow field. In the former case, unfortunately, it is 
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difficult to solve the original continuity equation using an iterative method since the discretized 
version is not diagonally dominant. 

With the aid of the ACES algorithm we produce equation (10a) or (lob) by rearranging the 
continuity equations, and these two equations behave convergently when solved alone by using 
the Gauss-Seidel method. Therefore it is now possible to check, for example, if the continuity 
equation is coded correctly and if the boundary condition of the flow velocity is prescribed 
properly. If they are, it is our experience that generally the ‘solution’ (incorrect, of course) 
converges very rapidly. 

Specijication of y 

The choice of a proper value for y is crucial, since the solution diverges if y is too large and 
converges too slowly if y is too small. It is proposed in this analysis that the value of y be 
reasonably estimated by substituting the momentum equations in the continuity equation. For 
clarity, we will present the derivation on a uniform grid for Stokes flows. The derivation on a non- 
uniform and/or irregular grid for Navier-Stokes flows is algebraically more complicated but 
conceptually the same 

The discretized x- and y-direction momentum equations at grid point a shown in Figure 2(a) 
can be rewritten respectively as 

where Ha is the collection of all terms not involved with p 5  or u,, and G, is that of all terms not 
involved with p s  or ua. Similar equations (18cH18h) can be derived at grid points b, c and d. 
Substituting equations (18aH18h) in 

u a  + 0, - ub + ub - uc -0,  + u d  - 0, = 0, (19) 
we obtain 

Utilizing equations (18aH18h) to eliminate Ha, G,, etc. and intentionally adding a term p 5  - p s  
to the right-hand side of equation (20), we obtain 

Comparing equation (21) with the continuity equation for p s ,  i.e. 

Y 
2h p s  = p 5  --( u a  + 0, - ub + ub - u, - uc + ud - vd), 

we find that 
y = 2/Re. 

In the present analysis we have used 2.2 instead of 2 because the former leads to slightly faster 
convergence rates. Derivation of non-uniform y can be conducted straightforwardly for 
Navier-Stokes flows in irregular geometries but is considered beyond the scope of the present 
work. 
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CONCLUSIONS 

On the basis of our present analysis, we find that use of the Algebraic Continuity Equation 
Solver (ACES), which is constructed from rearranging the discretized continuity equations, 
increases the convergence rate or makes otherwise divergent computations convergent. 

We have applied this concept to various flow problems representing a wide range of flow 
conditions and geometries. The results, except those of low-Reynolds-number flows, consistently 
support the above finding. Future work should include conducting more tests and improving the 
algorithm such that convergence rates for low-Reynolds-number flows increase. 
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